Microstructure and adhesion characteristics of a silver nanopaste screen-printed on Si substrate

نویسندگان

  • Kwang-Seok Kim
  • Yongil Kim
  • Seung-Boo Jung
چکیده

The microstructural evolution and the adhesion of an Ag nanopaste screen-printed on a silicon substrate were investigated as a function of sintering temperature. Through the two thermal analysis methods, such as differential scanning calorimeter and thermo-gravimetric analysis, the sintering conditions were defined where the temperature was raised from 150°C to 300°C, all with a fixed sintering time of 30 min. The microstructure and the volume of the printed Ag nanopaste were observed using a field emission scanning electron microscope and a 3-D surface profiler, respectively. The apparent density of the printed Ag nanopaste was calculated depending on the sintering conditions, and the adhesion was evaluated by a scratch test. As the sintering temperature increased from 150°C to 300°C, the apparent density and the adhesion increased by 22.7% and 43%, respectively. It is confirmed that the printed Ag nanopaste sintered at higher temperatures showed higher apparent density in the microstructural evolution and void aggregation, resulting in the lower electrical resistivity and various scratched fractures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance Properties of Printed Polyolefin Films using Water-Based Inks

During recent decades due to the increase in pollutants release from various industries, reduction or elimination of volatile organic compounds VOCs has become one of the main purposes of researches in order to protect the environment. In this research, two acrylic emulsion resins and an adhesion promoter polyester emulsion resin were used to optimize water-based printing ink formulation for pr...

متن کامل

Silicon Solar Cells: Structural Properties of Ag-Contacts/Si-Substrate

The screen-printed silver (Ag) thick-film is the most widely used front side contact in industrial crystalline silicon solar cells. The front contacts have the roles of efficiently contacting with the silicon (Si) and transporting the photogenerated current without adversely affecting the cell properties and without damaging the p-n junction. Although it is rapid, has low cost and is simplicity...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012